Available Transfer Capability (ATC) on BPA's Internal Paths

Non-Wires Solutions Roundtable November 21, 2003

Goal of ATC Methodology

- Optimize use of transmission assets while meeting current and forecasted long-term obligations without significant costs or increased curtailment as compared to historical levels.
- Develop an approach to manage the network that recognizes flows over the interconnected system while eliminating weaknesses inherent in the traditional contract path model.

What is the Problem?

- The BPA network is reaching its physical limitations due to regional load growth, the addition of new generator interconnections and new customers.
- BPA needs to target infrastructure capital and only construct new capacity to alleviate congested paths when absolutely necessary.
- To build infrastructure to eliminate all congestion would be hugely expensive, economically damaging to the region and environmentally irresponsible.

Flowgates of the BPA Transmission Grid

Depiction of How a Single Transaction Uses Multiple Flowgates on the Internal System

What are the Potential Risks and Costs?

- While TBL believes that the ATC results are based on conservative assumptions, projections could turn out to be wrong and any new long-term sales may result in a need for unanticipated new transmission facilities.
- While TBL believes that proposed path-specific uses provide for widely flexible dispatch of the federal hydro system to meet firm loads, it is possible abnormal system conditions could occasionally force less than optimum dispatch patterns.
- Major future changes in the hydro system or its operation may require changes in the assumptions for federal project dispatch.
- Frequency of restrictions for existing users utilizing discounted or no-cost interruptible transmission service could increase.

What Are The Benefits of BPA's Proposed Solution?

- Will allow TBL to be responsive to those waiting in the request queue for long-term service.
- Clearer identification of infrastructure needs and non-wire alternatives to reduce or eliminate flowgate constraints.
- Less risk of unneeded infrastructure investment.
- More efficient curtailment and redispatch operations (potential reduction in impacts to overall transmission system).
- Facilitates development of new Tariff-based products that may more fully utilize ATC.

ATC Methodology for Internal Paths

- Combination of traditional planning power flow analysis with a contract accounting system to produce a 20-year monthly ATC for each of nine flowgates.
- Key assumptions of the proposed methodology:
 - > Forecasted loads.
 - > Generation dispatch patterns.
 - > Power utilization factors (PUF) that are used to determine how power flows over specific flow gates.
 - > Current contract rights.
 - > Establish Transmission Reliability Margin to account for nomograms, load forecast error and inherent

Bonneville modeling uncertainty
Power Administration

ATC Methodology

8

Findings and Next Steps

- Phase I (October 2003)
 - > Post ATC methodology including Transmission Reliability Margin (TRM) and deadband.
 - > Post ATC results for summer 2004 (including Schultz caps and Kangley-Echo Lake) that show transmission system is fully subscribed.
 - > New limited long-term firm service may be offered.
- Phase II (December 2003)
 - > Expecting new ATC results starting in 2006 due to Coulee-Bell and Schultz-Wautoma projects (200-400 MW).
 - > Current and future long-term transmission requests will require additional network upgrades or non-wires solutions.
 - o These upgrades require participant funding with credits.

